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Abstract
We propose a combinatorial variant of the multi-armed
bandit task that allows an agent to select combina-
tions of multiple arms, instead of only one of the arms.
The resulting action space is thus multi-dimensional
and larger than usual, highlighting the exploration–
exploitation dilemma and the credit assignment problem.
To model human learning in this task, we develop a learn-
ing model based on the policy-gradient (PG) algorithm
of reinforcement learning, an algorithm that often ex-
cels value learning algorithms in complex action spaces,
and examines the mathematical properties of its updating
rule. In an experiment using this new task (N = 42), we
find nearly half of the participants are better fit by the PG
model and exhibit behavioral patterns that value learning
may have difficulty accounting for.
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Introduction
The multi-armed bandit (MAB) task is a widely-used testbed
for both reinforcement learning (RL) algorithms and human
cognition (Lattimore & Szepesvári, 2020; Schulz, Franklin, &
Gershman, 2020). In a typical MAB task, multiple arms are
available, each corresponding to one latent reward distribu-
tion. The agent must select one arm a time, and may learn to
adjust their action policy based on the outcomes. Although ex-
tensive research using the MAB task has revealed important
features of human learning behavior, its limited action space
may fail to detect learning mechanisms (including abnormal
ones) that operate in daily life’s large action spaces (Wise,
Emery, & Radulescu, 2024). One previous approach to create
a more realistic action space is to use options whose rewards
correlate with their visual or spatial features (Stojić, Schulz,
Analytis, & Speekenbrink, 2020; Wu, Schulz, Speekenbrink,
Nelson, & Meder, 2018). In this study, we proposed a combi-
natorial extension to the multi-armed bandit (MAB) task. Fur-
thermore, we developed a policy learning model that could
potentially learn more efficiently in the expanded action space
of our proposed task. We also examined the mathematical
properties of this model and tested it in a new experiment,
comparing it with a classic value learning model in explaining
human behavioral patterns.

The combinatorial bandit task
In the task, the agent can select multiple arms simultaneously
in each trial (Figure 1). With 4 arms available and the option
to select no arms, there are 24 = 16 possible actions. The
reward for a combination is determined by summing the re-
wards drawn from the selected arms, with each arm behaving
as in a standard MAB task. While combining multiple arms
to maximize rewards might resemble tasks in the representa-
tion learning literature that involve learning relevant features
for multiple dimensions (e.g. Song, Niv, & Cai, 2020), our task
is more versatile in its reward structure, which emphasizes
risky decisions and is as extensible as the original MAB.

Waiting (1.5‒2.5s)

Preparation (0.5s)

Response (≤ 6s)

Feedback (1.5s)

Figure 1: One trial of the combinatorial bandit task. During the
response phase, participants clicked on the squares (arms) of
the 2 by 2 panel to form a combinatorial action.

Experimental design Four arms were used for our exper-
iment and simulation. Each arm’s reward was drawn from a
normal distribution N (µ,σ2) with µ ∈ {35,15,−5,−25} and
σ = 15, and the means were randomly allocated to the four
arms before each session. During each trial of a session,
the means of either (35,−25) or (15,−5) had a probability of
p = 0.05 to be interchanged. Selecting no arms (all squares
OFF ) invoked the default choice, which followed a one-down-
three-up reward schedule (starting at 50, max: 50, min: 10)
that decreased by 10 when chosen and increased by 10 af-
ter three successive non-choices, resetting after each change.
Across trials, the panel was randomly initialized to an OFF or
ON state to avoid default choice abuse. Each participant com-
pleted four identical, independent 60-trial sessions. Each trial
had a time limit of 6 s for participants to choose arms and
confirm their choice, with a time-out punishment of r = −50.
Participants were instructed to find the effective arms to max-
imize their token (gem) earnings.

Participants Fifty participants were recruited through the
Prolific online platform. After completing the study, they were
paid a base reward of £4.90 and a performance-based bonus
ranging from £0.00 to £0.80. Eight participants were excluded
due to low effort (average clicks per trial less than 0.25). Data
from the remaining 42 participants entered further analysis.

Learning effects Within-session learning was evident in the
first 10 trials of each session, with the probability of select-
ing the best arm increasing with trials (logistic regression,
OR= 1.094, z= 5.179, p< 0.001). A learning effect was also
observed across sessions, with the mean expected reward
(standard deviation in parentheses) increasing from 20.85
(8.47) in session 1 to 22.97 (9.32), 22.07 (9.46), and 23.04
(8.75) in sessions 2, 3, and 4, respectively.

Computational modeling

The combinatorial action space exaggerates two classic prob-
lems in RL: the exploration–exploitation dilemma and the
credit assignment problem. In addition to the classic need to
balance exploiting good actions and exploring potentially bet-
ter ones (Mehlhorn et al., 2015), the agent must also trade-
off between obtaining more accurate information from fewer
arms and less accurate information from more arms. Mean-
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Figure 2: Modeling results comparing the policy-gradient (PG) and Rescorla–Wagner (RW) models. (A) Model comparison using
the difference in AICRW−AICPG. Each bar denotes one participant. Participants better fit by PG and RW are respectively in
blue and yellow. (B) Data vs. model prediction for one session each from two example participants whose choices were better fit
by PG (upper) and RW (lower). Each row denotes an arm, with colored cells indicating selected arms. The superimposed lines
show the model-predicted probabilities of selecting each arm, indicated by the relative height within each row.

while, with a common feedback for multiple arms, the credit
assignment to each arm is essential for learning.

Value-based learning algorithms, which reduces to the
Rescorla–Wagner (RW) learning rule (Rescorla & Wagner,
1972) in one-step decision tasks as ours, have been fre-
quently used to model human learning in MAB. However,
value learning algorithms such as RW typically do not provide
efficient ways to explore the large number of actions result-
ing from combinatorial choices. Their even attribution of the
prediction error to each arm can also be inefficient.

Policy learning algorithms, an alternative family of RL algo-
rithms, offer relatively smooth learning and flexibility in tasks
with higher-dimensional or even continuous action spaces
(Sutton & Barto, 2018). We hypothesize that such models
can capture some aspects of human learning in our task.

The policy gradient model The policy-gradient (PG) model
developed for our task is based on the REINFORCE formula-
tion of the policy gradient method (Williams, 1992):

H← H +η(Rt −Bt)∇πt(At |H)/πt(At |H), (1)

where the vector H ∈ R4 denotes the agent’s preference for
the four arms, η is the learning rate, Rt is received reward in
trial t, At is action in trial t, the ∇ term is gradient with respect
to H, and Bt = (1−α)Bt−1 +αRt with parameter α serves
as a baseline to reduce variance. The policy is parameterized
using a softmax function, which normalizes the action pref-
erences H(A) across all possible actions A. In simulations,
the model with parameters η = 0.053 and α = 0.2 achieves a
mean reward level of 22.56 (SD = 11.83), comparable to the
behavioral data.

Mathematical properties A key feature of the model is that
rarer actions experience larger net preference changes. This
follows the component-wise learning rule derived from Eq. 1
and additive action preferences, with the preference for com-
ponent H i updated by

H i← H i +η(Rt −Bt)∑A∈A i(δ(At ,A)−πt(A)), (2)

where A i denotes the set of all actions that include the i-th
arm, and δ(At ,A) = 1 if At = A and otherwise 0. For a cho-
sen arm, Eq. 2 shows that its net change is proportional to
1−∑A∈A i πt(A), where ∑A∈A i πt(A) can be viewed as the

marginal probability of selecting the i-th arm. This equation
has several implications for the learning speed and credit as-
signment. First, when the outcome is desirable (Rt ≥ Bt ),
the preference for a chosen arm increases quickly if it was
previously low but slowly if it was already high. This effec-
tively creates individual learning rates for different arms, in
contrast to the common learning rate used in RW. Second,
preference updating occurs similarly for each unchosen arm.
When the absence of a preferred arm yields a desirable out-
come, its preference would dramatically decrease. For large
action spaces, such preference updating can be more efficient
than RW learning. It may also parsimoniously explain the re-
cent finding of error-driven value updating of unchosen actions
(Ben-Artzi, Kessler, Nicenboim, & Shahar, 2023).

Third, when two arms are chosen with H i < H j, Eq. 2 im-
plies that for an undesirable outcome, the less preferred i-th
arm is blamed, while for a desirable outcome, the more pre-
ferred j-th arm’s contribution is ignored. This property can be
generalized to unchosen arms or more than two arms. A PG
agent may be trapped if the best arm becomes the worst, but
may escape the trap and detect changes more quickly through
parameters that encourage exploration.

Model fitting and comparison To see whether value learn-
ing or policy learning better explains human behaviors in our
experiment, we also implemented an RW model that evalu-
ates the value of each arm. For each participant, we fit the RW
and PG models to the choices in the last three sessions using
maximum likelihood estimation and compared the two mod-
els’ goodness-of-fit. Figure 2 highlights substantial individual
differences in model fitness, with the PG model outperforming
the RW model for 19 out of 42 participants, as indicated by
large differences in ∆AIC. For the example participant better
fit by the PG model (Figure 2B, upper), the probability of se-
lecting a long-unchosen arm decreased with trials, consistent
with PG but not RW predictions. Conversely, for the example
participant better fit by the RW model (Figure 2B, lower), the
RW model more accurately captured rapid valuation or deval-
uation. Further analysis of the PG model’s distinctive behav-
ioral patterns is needed to fully understand its unique contri-
butions.
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